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ABSTRACT

Efficient assignment and scheduling of tasks of a
parallel program is of prime importance in the
effective utilization of multiprocessor systems. In
this paper, we describe an efficient scheme for
static scheduling of precedence constrained task
graphs with non-negligible intertask
communication onto fully connected
multiprocessor systems with the objective of
minimizing the completion time. Our technique is
based on problem-space genetic algorithms
(PSGA). It combines the search power of genetic
algorithms with list scheduling heuristic in order
to reduce the completion time and to increase the
resource utilization. We demonstrate the
effectiveness of our technique by comparing
against several of the existing static scheduling
techniques for the test examples reported in
literature.

I. INTRODUCTION

Task assignment and scheduling can be defined as
assigning the tasks of a precedence constrained
task graph onto a set of processors and
determining the sequence of execution of the tasks
at each processor. Once an application program
has been partitioned, it can be represented by a
directed acyclic graph (DAG). In a DAG, nodes
denote tasks and an arc between any two nodes
represents data dependency among them. Weights
associated with the nodes and the arcs represent
the computation cost and the communication cost,
respectively. A major factor in the efficient
utilization of multiprocessor systems is the proper
assignment and scheduling of computational tasks
of a DAG among processors. The multiprocessor
scheduling problem is known to be NP-complete
except in a few special cases [1]. Hence,
satisfactory suboptimal solutions obtainable in a
reasonable amount of computation time are
generally sought [2-13].

One of the major set of heuristics for task
scheduiing onto multiprocessors is based on list
scheduling [2-8]. It has been reported in [2, 5] that
the critical path list scheduling heuristic is within
5% of the optimal solution 90% of the time when
the communication cost is ignored, while in the
worst case any list scheduling is within 50% of the
optimal solution. The critical path list scheduling
no longer provides the 50% performance guarantee
in the presence of non-negligible intertask
communications delays [ 2-5].
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In this paper we introduce a technique based on a
Problem-Space Genetic Algorithm (PSGA) for the
static, non-preemptive scheduling problem in
homogeneous fully connected multiprocessor
systems with the objective of minimizing the job
completion time. In the proposed technique we use
a classical GA to determine suitable priorities
which lead to a good solution by applying the list
scheduling as a decoding heuristic. A classical
genetic algorithm consists. of reproduction,
crossover and mutation operators [14, 15]. It starts
with an initial population of potential solutions
(each solution is called a chromosome in analogy
to natural genetics). It then examines the solution
space for a good solution to the problem being
solved by the repetitive application of genetic
operators such as crossover and mutation [14, 15].
GAs require problem-specific genetic operators
(crossover, mutation) to get good solutions. A new
search method based on problem-space, which
integrates a fast, problem specific heuristic with the
local search was proposed by Storer et al. [16].
The key concept in this method is to base the
definition of search neighborhood on a
heuristic/problem pair (#, p) where h is a known
fast heuristic and p represents the problem data.
Since a heuristic 4 is mapping from a problem to a
solution, the pair (h, p) is an encoding of a specific
solution. By perturbing the  problem p,
neighborhood of solutions is generated. The
problem space is generated by perturbing the
problem data. The perturbation range depends on
the specific problem. In order to keep the
generated "dummy" problem values in proximity
of the original problem values, upper and lower
limits on the perturbation can be introduced. The
solution set s corresponding to the problem set p
can be created by the application of an heuristic, A.
In the PSGA a chromosome is based on the
problem data and all the genetic operators are
applied in problem-space. The solution is obtained
by applying a simple and fast known heuristic to
map from problem-space to solution-space. PSGA
is different from the hybrid GA reported in [15]
which requires a uniform order-based crossover
operator and a special mutation operator, while
PSGA can use any crossover and mutation
operator. PSGA has been applied to solve many
optimization problems such as multiprocessor
synthesis [17], high-level synthesis of digital
systems [18, 19], and task assignment [20]. In this
paper we have applied PSGA to solve the
multiprocessor scheduling problem.

The rest of the paper is organized as follows: the
proposed scheme for multiprocessor scheduling is



discussed in Section II, experimental results are
reported in Section III and finally, Section IV
concludes this paper.

1I. TASK SCHEDULING SCHEME
In this section, first we formulate the scheduling
problem, then give an outline of the proposed
scheduling scheme followed by its detailed
implementation.

Let P= {p;; i=1, .., m} be aset of m
homogeneous fully connected processors and let
the application program be modeled by a directed
acyclic graph T = {Tj: j=1,.. .,n} of n tasks.
For any two tasks i, j € T, i < j means that task j
cannot be scheduled until i has been completed,
is a predecessor of j and j is a successor of L.
Weights associated with the nodes represent the
computation cost and the weights associated with
arcs represent the communication cost. An example
of a directed acyclic graph (DAG) consisting of 18
tasks adopted from [12] is shown in Figure 1 (a)
and a fully connected multiprocessor systems
consisting of three processors (m=3) is shown in
Figure 1 (b). The multiprocessor scheduling is to
assign the set of tasks T onto the set of processors P
in such a way that precedence constraints are
maintained, and to determine the start and finish
times of each task with the objective to minimize
the completion time. We assume that the
communication system is contention free and it
permits the overlap of communication with
computation. Task execution is started only after
all the data have been received from its
predecessors nodes. The communication links are
full duplex. Duplication of same task is not
allowed. Communication is zero when two tasks
are assigned to the same processor, otherwise they
incur the communication cost equal to the edge

(b)
Figure 1: (a) A directed acyclic graph (121,
(b) a fully connected multiprocessor system.
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Figure 2 gives the outline of the problem-space
genetic algorithm-based task scheduling scheme.

Step 1. Read directed acyclic graph and build a
design database. Also read population
size (Np), crossover rate (Xp), mutation
rate (M), number of generations (Ng),
and no. of processors (m).

Step 2. Current_pop = Gen_initial_pop (Np );

Step 4. fori:=1toNg DO

e Apply the decoding heuristic to
generate solution for each chromosome
inthe Current_pop.

* Calculate the cost and the fitness for
gach chromosome solution in the
Current_pop. Save the fittest current
solution in the database.

e Select a pair of chromosomes from
the current population probabilistically
based on their fitness as parents to
contribute to the next generation.

e Apply crossover and mutation to
generate offspring to form a new

population.
* Replace the entire current population
(Current pop) with the new
population.

- end for;

Step 5. Report the best final solution.
Figure 2: Outline of the scheduling scheme.

Initial Population

Chromosome representation and an initial
population of size 4 for the proposed scheme is
given in Figure 3. Each position of chromosome is
called a gene. A gene i in the chromosome
represents the priority of the node i in the directed
acyclic task graph. The priority (Wyo)" of anode
for the first chromosome of the initial population is
the total weight of the longest path from node i to
exit node (only node weights are considered). The
objective is to keep some knowledge about the
problem data in determining the priority of the
nodes. The priorities of rest of the chromosomes in
the initial population are generated by a random
perturbation in the priority of the first chromosome
as given below:

(Wi = (Wyo)l + Uniform(-n,n). (1)
Where (W,,)! is the priority of node i in the first
chromosome based on the original problem data,
Uniform (-n, 1) is a random number generated
uniformly between -1 and 7. We are considering
n=Max{(W,,)! v i}/ but it can be chosen
differently if desired. (W)} is the priority for node
i of the chromosome calculated by perturbing the
original problem data. The lower bound (-7 ) and
upper bound (1) on the perturbation keep the
dummy values in proximity to the original



problem. As one can see from Figure 3, each
chromosome has a different priority values. So
each chromosome guides the heuristic to generate a
different solution. Each chromosome is decoded
using a fast heuristic (e.g., list scheduling). This
chromosome provides the priorities when we want
to find a solution for the given problem using list
scheduling.

Node priorities from the problem data

o N
#[20) 19019 Jio 19 19|19|19|19|16|16|16|16]6|6[616|1|

1 2 3 4 5,6 7 8 010 1112 13 14 15 16 17 18

Nodenumber/
#2111T13T13]14T 29 | I P [17] 7 Jis]is]2se]3 Jto]15]11Ts]
1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18

#3121 711 129 129 Joo Jis J22]is J1s]12 isi7fie]is] 1014 T [19]
1 2 3 4 5 6 7 8 910 111213 1415 16 17 18

#4[13]14]26 J18 [22T16] 7] 18 [17oa O] 3510 8 |7 J12] 1
12 3 4 5 6 7 8 910 111213141516 17 18
Figure 3: Initial population of four chromosomes.

Decoding Heuristic

The scheduling problem can be thought of as
consisting of two parts: the assignment of tasks to
processors and task execution ordering within a
processor. A list scheduling heuristic solves both
problem at once. Our decoding heuristic is an
extended version of list scheduling [2-3]. We
applied this heuristic to generate a schedule from a
given chromosome with the objective of
minimizing the completion time. Pseudocode for
the decoding heuristic is given in Figure 4. In this
heuristic we first build a task list from a
chromosome and initialize a ready list with only
those tasks which do not have any predecessor.
Then a task from the ready list with the highest
priority is selected and scheduled to the available
processor on which the start time of the task is the
earliest taking into account the communication of
data from the predecessor tasks with the assigned
tasks. Then the task is deleted from the ready list.
This process is repeated on the ready list till either
no idle processor is available or there is no task in
the ready list. A task cannot be scheduled unless its
predecessors have been scheduled and data have
been communicated. The clock is set to the
earliest time when a processor becomes available.
Then, at the next clock, the processors are
recovered, if possible, and the ready list is updated
to have more tasks whose predecessors have been
scheduled. If there is no ready task at the clock, the
clock is then assigned the earliest time at which at
least one more running task completes its
execution. The algorithm repeats these simple steps
until the task list becomes empty.

For the illustrative example the tasks schedules for
the first three chromosomes of the initial
population onto a multiprocessor system
consisting of three homogeneous processors is
shown in Figure 5. The schedule for the fourth
chromosome is omitted for the sake of space. The
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minimum completion time for the initial population
is 39.0 time units.

Decoding_heuristic (chromosome, m):
Build task_list from the chromosome;
ready_list := Initialize_ready_list(task_list);
clock :=0;
while (task_list <> null) do begin
for each task on the ready_list do begin
Pick task i with the highest priority value;
J :=find_processor_early_time(; ) ;
Schedule task i onto processor ;
Delete task i from the ready._list;
end for;
clock := find_next_clock( );
recover _processors (clock);
ready_list :=update_ready_list( );
end while;
end Decoding_heuristic.
Figure 4: Pseudocode for decoding-heuristic.

i . . T T ™18
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Schedule for chromosome #1
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Py . 1 3 15
P g ¢ A
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Schedule for chromosome #2
gaz g - o —
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PIfT 3 | 1L
5 10 25 30 35 40 Time

15
Schedule forzc[r)nmmosome #3
Figure 5: Schedules for the first three chromosomes
of the initial population onto 3 processors.

Cost and Fitness Functions

The objective of optimization is to minimize the
Jjob completion time for an application program
represented by a directed acyclic graph (DAG).
For a given schedule s, the completion time Cy is
given by:

CS= maX{F], F2, Fm} (2)
Where F; is the completion time of a processor
Pj, j=1.. m. The completion time includes the
computation time, the communication time and the
waiting time because of the precedence constraints.
We are using equation 2 as cost function to be
minimized. In our study, as in Storer e al. [16], the
following cost-to-fitness mapping function was
used:

(Crmax-C)) ™

J=Np
> (Cmax-Cj ™
j=1
Where f(i) is the fitness of chromosome i, C,y is
the maximum cost of a chromosome in the
population, C; is the cost of chromosome i
computed from equation 2, N p 1s the population
size, and 7 is a parameter which determines the
selectivity of the fitness function. For high values
of 7, only the fittest few chromosomes will

fi) = 3



survive, diversity will be lost, and the algorithm
will converge to a population of identical solutions.
Thus © must be chosen to balance convergence
and diversity. It was established in Storer et al. [16]
that 1 to 5 is a reasonable range of 7. Table 1
shows the cost calculation and fitness for each
chromosome's solution assuming 7 = 3.

Table 1: Cost and fitness for Generation Gy).

Solution # Cost Fitness
1 39.0 0.435484
2 42.0 0.000000
3 40.0 0.129032
4 39.0 0.435484

Selection, Crossover and Mutation

By operating in problem space, we have utilized
standard roulette wheel selection technique [14]
where each chromosome has a slot sized in
proportion to its fitness. Each time we require an
offspring, a simple spin of the roulette wheel gives
a parent chromosome. A simple one-point
crossover [14] was applied to the chromosomes.
The crossover was applied with a crossover rate X .
Mutation was implemented by randomly selecting
a gene with mutation rate M, and perturbing its
value in the same perturbation range that was
established for initial population. For example,
Figure 6 shows the crossover operation when
chromosome #1 and chromosome #4 were selected
as parent with a cross site 5. The offspring
chromosomes are also shown. Similarly
chromosome #1 and chromosome #3 were selected
as parents to generated other two offspring
chromosomes.

Parent chromosomes (before crossover)

19 f19 ]9 JioJis e Juefis]e To] 6] 611
6 7 8 9 10 111213 14 15 16 17 18

o7 R e Ak [ 2]

#4113114 J26 18] 22]
12 3°4 5|6 7 8 910 111213 14 15 16 17 18

Cross site
Offspring chromosomes (after crossover)

|2o|19[19|19|19[ 16]17] 18 f17] 24101 3o 1q 8} 7 f12f1q
3 4 5 6 7 8 910111213 14 15 16 17 18

I13ll4126113l22I19I19119Ildldwmlslelﬂsl [1]
2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18

# o] 19 [15]19
T 2 34 3

Figure 6: Chromosome before and after crossover.

The final best schedule obtained by applying the
proposed scheme to the DAG of Figure 1 (a) onto
the multiprocessor system given in Figure 1 (b), is
shown ir Figure 7. The completion time obtained
by our technique is 36.0 time units. Note we did
not consider network contention into account.
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Figure 7: The final schedule for the illustrative
example of Figure 1 (a).

Speed-up: Speed up (SpdUp) is defined as the
completion time on a uniprocessor divided by
completion time on a multiprocessor system.

The SpdUp achieved for the illustrative example is:

SpdUp = 86.0/36.0 =2.388.
Efficiency : Efficiency (E) = (Speed-up*100)/m.

Where m is the number of processors .
The percentage efficiency (E) for the illustrative
example is given by :

E =79.629 percent.

1I1. EXPERIMENTAL RESULTS

The proposed problem-space genetic algorithm-
based scheme, called PSGAs, for multiprocessor
scheduling was implemented in C on a SUN
SPARCstation 10 and has been tested on examples
reported in literature. The results are very
promising. The proposed scheme offers
improvement in the completion time and efficiency
over previous work. We compared our results with
the CLANS [9], MCP [8] and LAST[6]. Note for
all the test examples we have used population size
Np=60, number of generations Ng=50, mutation
rate M;=0.009 and the crossover rate X;=1.0.

Note: Running time used by our scheme is in the
range of 5.0 sec. for the FFT1, FFT2, NEQ on
Sun SPARCStation 10. The running time for IRR
is 8.5 sec.

Example 1: Fast Fourier Transform Graphs

Our first example is a set of Fast Fourier
Transform (FFT) graphs called FFT1, and FFT4
selected from McCreary et al. [10]. Details of
these graphs can be found in [10]. The task
execution ordering and completion time (Cy) for
FFT1 and FFT2 obtained by the proposed
technique are given in Table 2. Comparison of
results (i.e., number of processors (m) used, Cg,
speed-up, and percentage efficiency ) for the FFT
graphs are given in Table 3. For FFT1, proposed
scheme produces the reported best time using the
same number of processors. For FFT4, the
completion time produced by the proposed scheme
is better than all except the LAST [6], whereas
efficiency of the schedules obtained by the
proposed scheme is the best among all techniques
which is 100%.



Table 2: Tasks execution ordering for FFT1 and
FFT2 by the proposed scheduling scheme.

DAGin| m Tasks execution Cs
ordering on processors
{2,1,9,17,21,22}, (3
4,10, 13,19, 26, 25},
{5, 6, 11, 14, 18, 23,
24 1,{7,8, 12, 16, 20,
27, 28}

{6,1,2,5,11, 12, 15,
16, 19, 25, 26, 20, 27,
23},

{7, 4, 8,3, 10,9, 14,
13, 17, 22, 21, 18, 24,
28}

Table 3: Comparison of results for FFT1 and
FFT4 selected from McCreary et al. [10].

124
FFT1 | 28| 4

FET4 | 28] 2 240

System | DAG|m| Cg |SpdUp| % E
FFT1| 4 | 124 | 2.387 | 59.6

CLANS[9] | FFT4 | 2 205 1.185 { 59.2
FFT1| 8 | 148 2.0 1250

MCP[8] | FFT4| 8 | 710 | 0.676 | 8.4
FFT1| 4 | 146 | 2.027 | 50.6

LAST [6] | FFT4} 8 | 170 | 2.823 | 352
FFT1} 4 | 124 | 2.387 | 59.6

Proposed | FFT4{ 2 | 240 2.0 100

Example 2: Irregular Asymmetric Graphs
There are two graphs in this example, NEQ and
IRR selected from McCreary et al. [10]. Task
execution ordering and Cy for NEQ, and IRR
graphs obtained by our scheme are give in Table 4.
Comparison of results is given in Table 5. We are
reporting the new best time for NEQ using less
number of processors. The proposed scheme
outperforms all other techniques both in terms of
completion time and efficiency. For IRR only
MCP [8] has a better Cg, but efficiency of the
schedule obtained by our scheme is higher than
all other techniques.

Table 4: Tasks execution ordering for test graphs
by the proposed scheduling scheme, PSGAs.

DAG|n| m Tasks execution Cs
ordering on processors
{1, 2, 4,8, 10, 13, 15,
17, 19, 20}, {5, 7, 12,
9, 16, 18}

{3,6, 11,14}

{1, 4,8, 11, 9, 14, 15,
22,28, 23,24, 31},
{2, 5, 29, 34, 18, 26,
32, 37,4014, {3, 7, 13,
20, 21, 17, 19, 27,
35, 38}, {10, 6, 12,
16, 25, 33, 30, 36, 39,
41}

NEQ | 20f 3 1586

615

218

Table 5: Comparison of results for NEQ and IRR
selected from McCreary et al. [10].

System | DAG|m| Cg |SpdUp| % E
NEQ | 5] 1652 | 1.915 | 38.3

CLANS[9]| IRR | 7| 725 | 1.834 ] 262
NEQ | 51 1597 | 1.981 | 39.6

MCP[8] | IRR j12] 605 | 2.198 | 18.3
NEQ | 4 | 2082 | 1.519 { 31.9

LAST [6] | IRR | 3| 840 | 1.583 | 52.7
NEQ 3 1586  1.995 66.6

Proposed | IRR 4 615 2162 54.1

To demonstrate the strength of the proposed
PSGAs scheme we have generated a variety of
random graphs (including computation intensive
as well as communication intensive) from 40 to
200 nodes and compared results against MH [12].
We have achieved considerable improvement is
speed-up over [12]. We have omitted these results
due to the space limitation.

VI. CONCLUSIONS

In this paper we have proposed a Problem-Space
Genetic Algorithm-based technique for the static
multiprocessor scheduling problem including the
communication delays to reduce the completion
time and to increase the throughput of the system.
The proposed scheme is a blend of the standard
genetic algorithm and an heuristic, which uses a
different neighborhood structure to search a large
solution space in an intelligent way in order to find
the best possible solution within an acceptable CPU
time. In the proposed scheme the chromosomal
representation is based on problem data, and
solution is generated by applying a fast decoding
heuristic (list scheduling) in order to map from
problem domain to solution domain. Experimental
results on test examples showed that the
completion time can be reduced and the resources
can be utilized more efficiently by using the
proposed technique as compared to the existing
approaches. We are extending our work fur other
architecutures such as hypercube, mesh ¢fc. and to
include network contention.
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